

Tumor Burden Increase at Radiological Disease Progression Associates with Poor Overall Survival in Advanced Colorectal Cancer

Yuri Kogan, Moran Elishmereni, Eldad Taub, Zvia Agur

Optimata Ltd. Israel

Background

Investigating the association between quantifiable features of tumor burden and survival in advanced cancer patients can uncover elements whose control could potentially influence life expectancy in these patients.

Our aim was to examine how changes in tumor burden, and specifically in sum of longest diameters (SLD) during RECIST-determined progression (i.e. progressive disease, PD) could affect the post-progression survival (PPS) of patients with advanced colorectal cancer (CRC), using proportional-hazards survival models.

Methods & Results

Individual data of metastatic CRC patients under standard-of-care therapy were obtained from 3 clinical studies (accessible via projectdatasphere.org; Tab. 1).

Multivariate analysis was performed to test whether the change in SLD from nadir to PD is an independent predictive factor for PPS. Thus, optimally sparse Cox PH models for PPS were built for each dataset and patient group, and the effect of adding Δ SLDP_n was tested through HR, p value and the model Akaike information

Multivariate Models

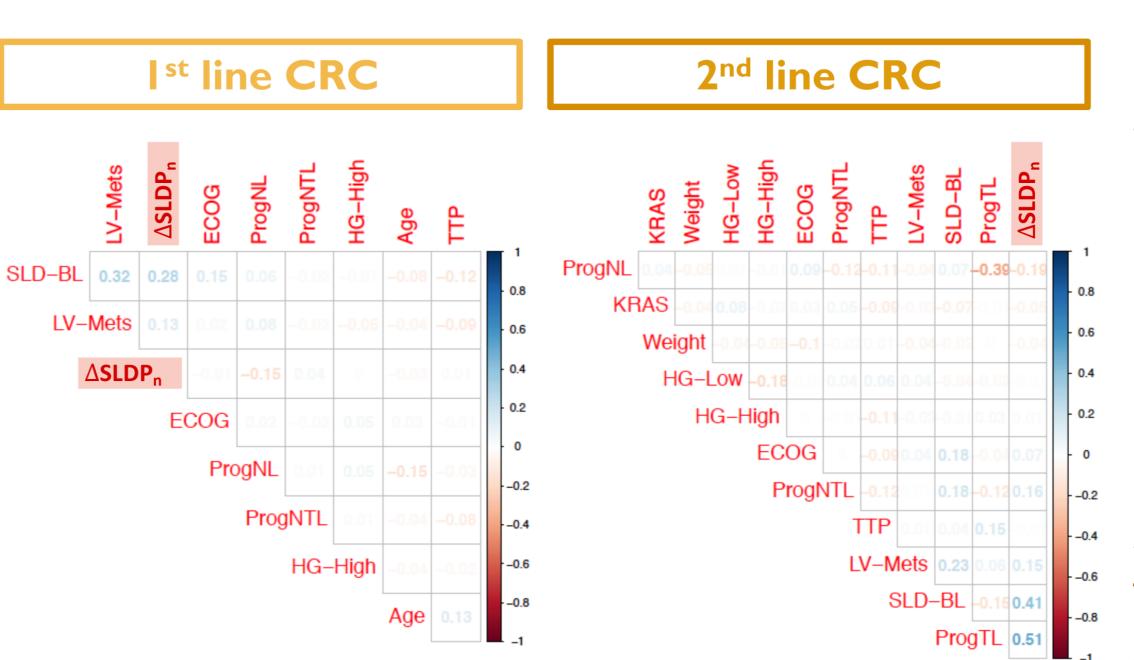
Fig. 2. Approach for the multivariate model development. Covariate Covariate Only factors having a p value of <0.1 in the correlation test² screening ¹ univariate Cox model in both patient subgroups (ALL-PD, TL-PD) were selected; progression-SLD metrics were Construction of a excluded altogether 2. Highly correlated factors were reduced basic multivariate Cox Model M₀ was constructed by regression of model for PPS $(M_0)^3$ PPS on all the selected covariates, without progression-SLD metrics The minimal model M_n was constructed by **Reduction to a minimal Cox** backward stepwise elimination of model (M_n) for PPS⁴ covariates, with a p value threshold of 0.05 The importance of Δ SLDP_n (or the residual, derived by its regression on other covariates) when added to the minimal **Evaluation of the influence of the** model M_n was evaluated by its HR, **SLD** change at progression on **PPS** significance (p value) and change in AIC within model $(M_n)^5$

The following factors (covariates) were evaluated as PPS predictors

Baseline covariates: Gender, age weight, ECOG performance statu liver/lymph node metastases, histological grade, KRAS mutation status, baseline SLD.

Progression-related covariates:

- 1. Time to progression (TTP);
- 2. Nature of the progression (target, non-target, and/or net lesion PD);
- 3. Quantitative progression-SLD metrics capturing the tumor burden increase during PD


s)	Clinical study (NCT identifiers)	NCT00272051 NCT00305188	NCT00339183
rs:	Treatment line	I st line	2 nd line
	Number of patients		
e,	Total patients	711	916
us,	All progressing patients (ALL-PD)	459	639
	Target-lesion progressing patients (TL-PD)	240	321
onal	Age		
Jiai	Median, years (range)	62 (22-82)	61 (28-86)
	Gender		
1	Male / Female	429 / 282	348 / 540
-	Treatment		
	FOLFOX	489	-
	FOLFIRI	-	457
	FOLFIRI + Panitumumab	-	459
ew-	Baseline SLD		
	Median, cm (range)	10.4 (1-51)	11.2 (2-56)
	Time to progression		
)	Median, months	8.7	4
-	Overall survival		
	Median, months	20.5	12.7
	Tab. 1. Patient data characteristics		

Tab. 1. Patient data characteristics.

(calculated only in patients uncensored for progression and with measurable tumor burden at RECIST-determined progression).

Univariate Analysis

criterion (AIC) value (Fig. 2).

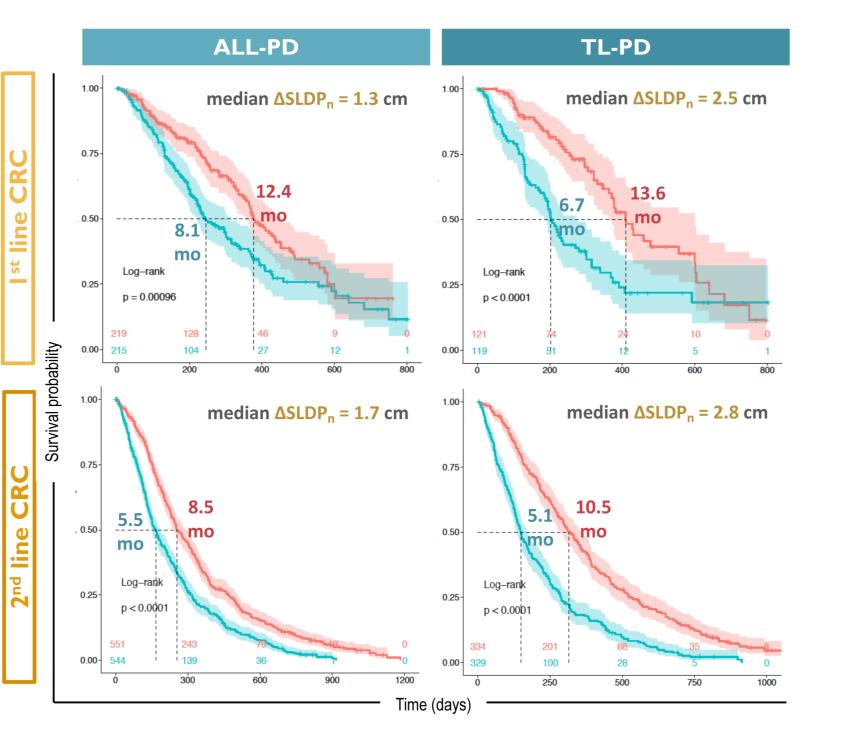
The SLD change from nadir to PD (\triangle SLDP_n) remained an important **PPS** predictor in multivariate models controlling for other prognostic factors, including ECOG, TTP,

The factor Δ SLDP_n strongly correlated with SLD-BL, ProgTL and ProgNL (Fig. 3). These correlations were weighed out by regressing Δ SLDP_n on other factors and using the residuals from this regression, res. Δ SLDP_n, as an added survival predictor.

Fig. 3. Correlation matrix for *significant PPS covariates* (*p*<0.1 in the univariate Cox regressions in ALL-PD and TL-PD patients; Tab. 2).

Tab. 3. Multivariate Cox regressions for 1st/2nd line-treated CRC patients with progression of any type (ALL-PD) or target-lesion progression (TL-PD). Covariates are listed alongside their HR values (and 95% confidence interval), and significance.

ALL-PD Patients										
I st line CRC Minimal model			Minimal mo ∆SLDP _n		Minimal model + residual of ∆SLDP _n					
Covariate	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value				
ProgNTL	1.14 (1.01 - 1.28)	0.04	1.15 (1.02 - 1.30)	0.03	1.16 (1.03 - 1.31)	0.018				
ECOG	1.32 (1.17 - 1.50)	<10-3	1.36 (1.19 - 1.55)	<10-3	1.34 (1.18 - 1.53)	<10-3				
ГТР	0.64 (0.54 - 0.74)	<10-3	0.61 (0.52 - 0.72)	<10-3	0.61 (0.52 - 0.72)	<10-3				
SLD-BL	1.31 (1.17 - 1.46)	<10-3	1.26 (1.11 - 1.42)	<10-3	1.33 (1.19 - 1.49)	<10-3				
\SLDP _n	-	-	1.21 (1.06 - 1.38)	0.004	-	-				
res. ΔSLDP _n	-	-	-	-	1.2 (1.06 - 1.36)	0.004				


The correlation of progression-associated covariates with survival in different CRC patient groups was examined by (1) univariate Cox proportional-hazards (PH) models, and (2) Kaplan-Meier plots (PPS) curve separation assessed by the log-rank test).

The SLD change from nadir to **PD** (\triangle **SLDP**_n) was a significant predictor of PPS in CRC patients under 1st/2nd line treatment (Tab.2)

Patients with small Δ SLDP_n had a 1.5-2-times longer survival than large- Δ **SLDP**_n patients in all groups (Fig. I)

	I st line CRC	ALL-PD Patients			TL-PD Patients		
Covariate		Median	HR	p value	Median	HR	p value
	ProgTL (Target Lesions Progression)	n/a	0.99	0.921	n/a	n/a	n/a
	ProgNL (New Lesions Progression)	n/a	1.19	0.012	n/a	1.30	0.004
es	ProgNTL (Non-Target Lesions Progression)	n/a	1.15	0.024	n/a	1.20	0.028
riat	Gender	n/a	0.94	0.335	n/a	0.86	0.093
Binary covariates	ECOG (Performance Status)	n/a	1.31	<10-3	n/a	1.30	0.003
Λ cc	LV-Mets (Liver Metastasis)	n/a	1.15	0.039	n/a	1.22	0.040
nar	LN-Mets (Lymph Node Metastasis)	n/a	1.07	0.260	n/a	1.13	0.155
Bii	HG-Low (Histology – Low Grade)	n/a	1.07	0.346	n/a	0.99	0.916
	HG-Med (Histology – Intermediate Grade)	n/a	0.83	0.009	n/a	0.87	0.139
	HG-High (Histology – High Grade)	n/a	1.18	0.012	n/a	1.23	0.022
	TTP (Time to Progression)	231	0.64	<10-3	236.5	0.68	<10-3
tes	SLDP (SLD at Progression)	7	1.54	<10-3	7.75	1.54	<10-3
aria	SLDP _{rbl} (SLDP relative to baseline)	0.75	1.36	<10-3	0.85	1.34	<10-3
covariates	$\Delta SLDP_n$ (SLDP change from nadir)	1.3	1.27	<10-3	2.5	1.42	<10-3
Continuous c	Δ SLDP _{rn} (rel. SLDP change from nadir)	0.24	0.77	0.083	0.45	0.65	0.068
	vSLDP _n (SLDP velocity from nadir)	0.34	1.30	0.002	0.76	1.52	<10-3
ntin	Age	62	0.83	0.004	64	0.84	0.063
Col	Weight	70.1	0.89	0.085	70	0.86	0.106
	SLD-BL (SLD at baseline)	10.5	1.33	<10-3	10	1.33	<10-3

Fig. 1. Kaplan-Meier survival plots for $\Delta SLDP_{nv}$ dichotomized relative to its median, in patients with any progression type (ALL-PD) or target-lesion progression only (TL-PD) in each dataset. The median values separating the plots are shown for each group, along with corresponding p-values. The median PPS is indicated in each curve.

2 nd line CRC		ALL-PD Patients			TL-PD Patients		
Covariate		Median	HR	p value	Median	HR	p value
	ProgTL (Target Lesions Progression)	1	0.92	0.008	n/a	n/a	n/a
	ProgNL (New Lesions Progression)	0	1.22	<10-3	0	1.30	<10-3
es	ProgNTL (Non-Target Lesions Progression)	1	1.20	<10-3	1	1.27	<10-3
riat	Gender	1	1.01	0.716	1	0.97	0.525
Binary covariates	ECOG (Performance Status)	1	1.24	<10 ⁻³	0	1.19	<10-3
∧ cc	LV-Mets (Liver Metastasis)	1	1.06	0.052	1	1.10	0.015
nar	KRAS Mutational Status	0	1.08	0.014	0	1.08	0.060
Bi	HG-Low (Histology – Low Grade)	0	0.90	0.001	0	0.91	0.021
	HG-Med (Histology – Intermediate Grade)	1	1.03	0.405	1	0.98	0.612
	HG-High (Histology – High Grade)	0	1.09	0.009	0	1.16	0.001
	TTP (Time to Progression)	120	0.68	<10-3	162	0.68	<10-3
covariates	SLDP (SLD at Progression)	11.2	1.60	<10-3	11	1.74	<10-3
aria	SLDP _{rbl} (SLDP relative to baseline)	1.06	1.22	<10-3	1.2	1.26	<10-3
	$\Delta SLDP_n$ (SLDP change from nadir)	1.7	1.28	<10-3	2.8	1.41	<10-3
Continuous o	$\Delta \text{SLDP}_{\text{rn}}$ (rel. SLDP change from nadir)	0.23	0.92	0.008	0.33	0.91	0.031
	vSLDP _n (SLDP velocity from nadir)	0.6	1.19	<10-3	0.97	1.24	<10-3
ntir	Age	61	1.00	0.986	61	1.02	0.641
Co	Weight	73.3	0.91	0.003	73	0.92	0.034
	SLD-BL (SLD at baseline)	11.3	1.37	<10-3	10.2	1.44	<10-3

KRAS, etc. (Tab. 3), and its addition improved the model AIC in every patient group and treatment line

The predictive power of $\Delta SLDP_n$ is apparent even in models with correlated covariates, e.g. SLD-BL, as seen in models containing the residual of its regression on all other factors (Tab. 3)

In the 2nd line cohort, SLD-BL (baseline tumor size at 2nd line onset, at the end of 1st line) was the most significant PPS predictor (Tab. 3), stressing the importance of the SLD change at progression during 1st line therapy for survival.

2 nd line CRC	Minimal model		Minimal model + ∆SLDP _n		Minimal model + residual of Δ SLDP _n	
Covariate	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value
ECOG	1.14 (1.07 - 1.22)	<10-3	1.14 (1.07 - 1.22)	<10-3	1.14 (1.07 - 1.22)	<10-3
KRAS	1.14 (1.07 - 1.22)	<10-3	1.15 (1.08 - 1.23)	<10-3	1.15 (1.08 - 1.23)	<10-3
ТТР	0.66 (0.61 - 0.72)	<10-3	0.66 (0.61 - 0.71)	<10-3	0.66 (0.61 - 0.71)	<10-3
Weight	0.89 (0.83 - 0.95)	<10-3	0.90 (0.84 - 0.96)	0.001	0.89 (0.83 - 0.95)	<10-3
SLD-BL	1.43 (1.34 - 1.52)	<10-3	1.36 (1.27 - 1.46)	<10-3	1.46 (1.36 - 1.56)	<10-3
ΔSLDP _n	-	-	1.18 (1.11 - 1.25)	<10-3	-	-
res. ΔSLDP _n	-	-	-	-	1.18 (1.11 - 1.25)	<10-3

TL-PD Patients									
I st line CRC	Minimal model		Minimal mo ∆SLDP _n		Minimal model + residual of ∆SLDP _n				
Covariate	HR (95% CI)	p value	HR (95% CI)	p value	HR (95% CI)	p value			
ProgNTL	1.32 (1.11 - 1.59)	0.002	1.31 (1.10 - 1.57)	0.003	1.36 (1.13 - 1.63)	0.001			
ECOG	1.35 (1.13 - 1.62)	<10-3	1.37 (1.15 - 1.64)	<10-3	1.36 (1.14 - 1.63)	<10-3			
ГТР	0.63 (0.51 - 0.78)	<10-3	0.64 (0.52 - 0.79)	<10-3	0.63 (0.51 - 0.78)	<10-3			
SLD-BL	1.37 (1.18 - 1.60)	<10-3	1.16 (0.93 - 1.44)	0.19	1.37 (1.18 - 1.60)	<10-3			
∆SLDP _n	-	-	1.32 (1.05 - 1.66)	0.02	-	-			
res. ΔSLDP _n	-	-	-	-	1.24 (1.04 - 1.48)	0.02			

2 nd line CRC	Minimal model		Minimal model + ∆SLDP _n		Minimal model + residual of $\Delta SLDP_n$	
Covariate	HR (95% CI)	p value	HR (95% CI) p value		HR (95% CI)	p value
ECOG	1.12 (1.03 - 1.22)	0.007	1.12 (1.03 - 1.22)	0.01	1.12 (1.03 - 1.21)	0.01
KRAS	1.15 (1.05 - 1.25)	0.001	1.15 (1.06 - 1.25)	0.001	1.15 (1.06 - 1.26)	0.001
ТТР	0.62 (0.56 - 0.69)	<10-3	0.64 (0.58 - 0.71)	<10-3	0.63 (0.57 - 0.69)	<10-3
SLD-BL	1.62 (1.49 - 1.77)	<10-3	1.49 (1.33 - 1.67)	<10-3	1.63 (1.49 - 1.77)	<10 ⁻³
ΔSLDP _n		1.12 (1.01 - 1.24)	0.02	-	-	
res. ΔSLDP _n	-	-	-	-	1.12 (1.01 - 1.24)	0.03

Conclusions and Implications

Tab. 2. Univariate Cox regression of PPS on all tested factors. Progression-SLD metrics (red) and other covariates (black) were tested in all progressing patients (ALL-PD) or only target-lesion-progressing patients (TL-PD) in 1st/2nd line settings. Hazard ratios (HR) and corresponding p values are displayed. Significant covariates (p<0.05) are highlighted.

• Baseline SLD, ECOG performance status, presence of liver metastasis and high grade histology (poorly differentiated CRC) were also strong PPS predictors (Tab.2). • Progression-SLD metrics were highly correlated between them, as well as with SLD-BL and ProgTL (not shown). Next, we proceeded to investigate Δ SLDP_n as the representing progression-SLD metric in the multivariate model.

- The increase in tumor size from nadir to progression (ΔSLDP_n) is a survival predictor in CRC patients; its predictive power appears independent of the treatment line and drug applied to the patients.
- $\Delta SLDP_n$ is an independent significant predictor of survival, also when considered relatively to other disease predictors.
- This complements our past discovery that survival in metastatic non-small cell lung cancer is correlated with $\Delta SLDP_n$ [1], suggesting the crossindication prognostic value of this factor.

• A potential implication: identification of impending progression at the right time, when the tumor increase is still small, could enable oncologists to effectively extend the patient's survival (e.g. by an earlier switch to next-line therapy). This possibility must be prospectively tested.

References: [1] Kogan Y, Elishmereni M, Taub E, Agur Z. Increase in tumor burden at disease progression as a predictor of survival in advanced NSCLC patients. | Clin Oncol 36, 2018 (suppl; abstr e21114).

Website: www.optimata.com **Correspondence:** yurikogan@optimata.com